16 research outputs found

    The fine-scale remobilization of metals in the surface sediment of the north-east Atlantic.

    No full text
    Vertical profiles of trace metals were measured at 1-mm intervals by deploying DGT probes in sediment cores collected from the deep Atlantic Ocean (Feni Drift) before and after the spring phytoplankton bloom. DGT (diffusive gradients in thin-films) accumulates metals on a chelating resin after their diffusive transport through a layer of hydrogel. The mean concentration of metal in the porewaters at the surface of the device during its deployment was derived from the measured mass of metal. Well-defined laboratory systems were used to establish the reproducibility and accuracy of the DGT technique for measuring metals at 1-mm intervals. The Fe and Mn profiles showed the expected redox sequence with depth, with additional fine-scale (2–5 mm) features. The close correspondence between the Mn and Co profiles, on both coarse and fine scales, showed that their chemistry is closely coupled in sediments as well as water columns. Changes in the background concentrations of Cd, Cu, Ni and Zn with depth were well correlated with Mn and Co, but the four metals also displayed mm-scale maxima that were largely independent of Mn, Co or Fe. Two-dimensional measurements at a 100-ÎŒm resolution on a DGT probe, deployed in situ with an autonomous lander, showed that the maxima were most likely associated with near-spherical, highly localised sources. The results were consistent with release of Cd, Cu, Ni and Zn from organic and planktonic skeletal material. Where there was associated release of Mn and/or Fe, through their oxides acting as electron acceptors in the decomposition of the organic matter, trace metals could also be supplied by release from the oxides. The microniches responsible for high local concentrations of metals in the porewaters were hypothesised to be due to downward mixing of material by burrowing organisms, known to be prevalent in these sediments. Much of this material appeared to be present as faecal pellets of various origins, with sizes in the range of 50um to 1 cm

    The impact of rainfall events, catchment characteristics and estuarine processes on the export of dissolved organic matter from two lowland rivers and their shared estuary

    Get PDF
    Terrestrially-derived dissolved organic carbon (DOC) and nitrogen (DON) transported by rivers have been recognised as contributors to aquatic nutrient burdens, and can be of importance in rivers and estuaries already impacted by anthropogenic inorganic nutrient discharges. The concentration of DOC and DON and the flux of both to the estuary and ultimately the coastal zone is dependent upon many factors including rainfall, catchment land use, and biological processes. DOC and DON concentrations together with nitrate plus nitrite and ammonium concentrations were measured in the anthropogenically-impacted estuary Christchurch Harbour (UK) and at sites in the lower reaches of its two source rivers, the Hampshire Avon and the Stour, at weekly intervals for a year during which time several extreme rainfall events occurred. A series of transects along the estuary were also performed after weekly sampling was completed. DOC concentrations were correlated between both rivers and the estuary and were positively related to increases in river flow, but DON concentrations revealed a more complicated picture. Peak instantaneous fluxes of DOC and DON exceeded 60000 kg C d-1 and 7000 kg N d-1 respectively both in the Stour and the estuary during high flow periods. The sources of both and routes by which they enter the aquatic system may account for the differences in dynamics, with flushing of superficial soils being a key source of DOC and point sources such as sewage treatment works being proposed as sources of DON. Removal processes within the estuary were also of importance for DON concentrations while DOC behaved more conservatively with some evidence of local production within the estuary. Estimated annual loads of DON and DOC to the coastal zone from Christchurch Harbour were 118 kg N km-2 y-1 and 2296 kg C km-2 y-1

    Shipboard measurements of sediment stability using a small annular flume—Core Mini Flume (CMF)

    Get PDF
    Estimates of bed stability in coastal environments are essential to physical, biological, and chemical investigations of cohesive sediments. The Core Mini Flume (CMF), a 200 mm diameter annular flume has been designed to undertake sediment stability experiments on collected intact sediment box cores. Bed properties were assessed for replicate box cores at 3 contrasting sites in UK coastal waters (Tyne [in 2011 and 2012], Plymouth and Celtic Deep), each covering a maximum area of 80 m2. No significant horizontal spatial variations were found for grain size, bulk density, porosity, or oxygen penetration at the sites. Resuspension experiments performed on replicate cores yielded highly replicable results for each site, giving average erosion thresholds of 0.33 ± 0.02 (Tyne 2011), 0.215 ± 0.03 (Tyne 2012), 0.23 ± 0.01 (Plymouth), and 0.09 ± 0.006 (Celtic Deep) Pa and erosion depths of 10.7 ± 1.7, 6.63 ± 1.10, 3.65 ± 0.95, and 4.6 ± 0.5 mm. Using an already established methodology, the CMF allowed detailed replicate experiments to be performed on-board ship rapidly after sediment collection, while minimizing the time spent at each station. The use of intact box cores minimized the disturbance to the bed often associated with recovering material to a laboratory or remoulding a bed. We have demonstrated that the convenience of laboratory-based methodologies can be combined with the benefit of prompt investigations on undisturbed beds complete with overlying in situ water to produce robust measurements of sediment stability

    Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments

    Get PDF
    Pore-fluid Fe isotopes may be a unique tracer of sediment respiration by dissimilatory Fe reducing bacteria, but to date, pore-fluid Fe isotope measurements have been restricted to continental shelf settings. Here, we present ή56Fe values of pore fluids from two distinct sedimentary settings: (1) a riverine-dominated site on the northern California margin (Eel River shelf; 120 m water depth) and (2) biogenic opal-rich volcaniclastic deep-sea sediments from the Southern Ocean (north and south of the Crozet Plateau; 3000–4000 m water depth). The Fe isotope compositions of Crozet region pore fluids are significantly less fractionated (ή56Fe = +0.12‰ to –0.01‰) than the Eel River shelf (ή56Fe = –0.65‰ to –3.40‰) and previous studies of pore-fluid Fe isotopes, relative to average igneous rocks. Our data represent the first measurements of Fe isotope compositions in pore fluids from deep-sea sediments. A comparison of pore-fluid ή56Fe with the relative abundance of highly labile Fe in the reactive sedimentary Fe pool demonstrates that the composition of Fe isotopes in the pore fluids reflects the different extent of sedimentary Fe redox recycling between these sites

    High-resolution metal gradients measured by in situ DGT/DET deployment in Black sea sediments using an autonomous benthic lander

    No full text
    DET (Diffusive equilibration in thin films) and DGT (diffusive gradients in thin films) have been deployed in situ using an autonomous benthic lander to measure concentrations and induced fluxes of Fe and Mn (DET/DGT) and trace metals (DGT) in pore waters at millimeter spatial resolutions. The newly developed deployment system is described, and based on these first results, its strengths and weaknesses are discussed. Deployments were made in the Western Black Sea in shelf sediments overlain by well‐oxygenated water at a water depth of 77 m. Maxima of the redox‐sensitive metals at 4 and 8 cm deep within the sediment indicated that two zones of reduction dominated the geochemistry. Sharp, but systematic, features were superimposed on this general picture and were well replicated in the profiles of Mn, Co, and Cd, but the sharp features in the Fe profile were offset from those of the others elements by several millimeters. Detection of this functional discrimination between Fe and Mn as regulators of trace metals would not have been possible using more conventional sampling procedures

    The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    No full text
    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange–Cathodic Stripping Voltammetry (CLE–CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12–22% of the global deep-ocean dissolved Fe budget

    Uptake of dissolved oxygen during marine diagenesis of fresh volcanic material

    No full text
    Convergent plate volcanism typically occurs close to the oceans, hence a high proportion of fresh, highly reactive, volcanogenic material is rapidly deposited onto the seafloor. Previous studies (Haeckel et al., 2001) have shown that dissolved oxygen (O2) is extensively depleted in the pore waters of ash deposited in the South China Sea from the 1991 Pinatubo eruption. Here, we report the results of an extensive field, laboratory and modelling study of dissolved O2 concentrations and ancillary geochemical data (pore water NO2 + NO3 and solid phase FeII/FeIII and organic carbon) in the sediments surrounding the volcanic island of Montserrat, Lesser Antilles. Dissolved O2 is depleted to zero within 0.3 cm of the sediment–water interface in sites containing the thickest layers of volcanogenic material (35 cm), compared to a penetration depth of ?6 cm in sites with minimal ash loading of <0.5 cm. Experimental studies using volcanogenic sediment in a flow-through cell obtained similar O2 consumption rates to those observed in studies of individual minerals and basalt (White and Yee, 1985). These results, and comparison with other geochemical data, lead us to conclude that the dominant mechanism for dissolved O2 uptake in volcanogenic sediments is oxidation of silicate-bound FeII by a coupled electron transfer reaction. The observation that rapid dissolved O2 uptake by volcanogenic sediments is a ubiquitous feature of deposition of fresh volcanic material in the oceans may have global implications. While the global amount of dissolved O2 consumed by this process is trivial compared to that resulting from oxidation of organic carbon, the widespread deposition of volcanic ash from massive explosive eruptions may lead to enhanced preservation of organic carbon in marine sediments and thus lowering of atmospheric CO2 concentrations during critical periods in Earth history

    Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids

    No full text
    Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0–20 cm below sea floor [cmbsf]) aqueous (<0.02 ?m) and aqueous + colloidal here in after ‘dissolved’ (<0.2 ?m) pore water Fe and Mn distributions, and ancillary O2(aq), NO-3 and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous–volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 ?M Fe; 32 ?M Mn), with maxima (20 ?M Fe; 200 ?M Mn) in the upper 1–15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 ?m and 0.02 ?m filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region

    Benthic controls of resuspension in UK shelf seas: implications for resuspension frequency

    Get PDF
    In situ measurements and ship-based resuspension experiments using annular flumes are used to determine sediment stability and critical erosion thresholds for four sites with significantly different sediment characteristics, located in the Celtic Sea at water depths of 100 m. Seasonal and spatial variability of sediment characteristics and erodability is examined, and found to be the result of changes in percentage of organic carbon in the surface sediments (R2 = 0.82) and bulk density (R2 = 0.73) respectively when individual characteristic bed parameters are considered. Principal component analysis and linear regression analysis are used to determine a predictive model for erosion threshold in the Celtic Sea (R2 = 0.99), based on grain size, sorting, kurtosis, bulk density, porosity, percentage fines, organic carbon content and chlorophyll a concentration. Physical sediment characteristics were found to be more significant controls of bed stability than biological factors. Local hydrodynamic conditions are used to determine the likelihood and frequency of resuspension given these critical erosion thresholds. Resuspension is driven by tidal currents, and is common year-round, leading to a constant re-working of bed sediments in particular at the muddier sites. This is confirmed by in situ measurements of suspended sediment concentration
    corecore